The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance.
نویسندگان
چکیده
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.
منابع مشابه
Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis.
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing explorat...
متن کاملFitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana.
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber con...
متن کاملUncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant.
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistan...
متن کاملArabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in ...
متن کاملA novel signaling pathway controlling induced systemic resistance in Arabidopsis.
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 9 9 شماره
صفحات -
تاریخ انتشار 1997